
Debugging Scalable MPI,
Hybrid and/or Accelerated

Applications with TotalView

Extreme Scale Computing
Training Program

August 2014

Chris Gottbrath

Agenda

•  Introduction
•  TotalView Debugger
• Demo
• Debugging MPI / OpenMP Hybrid Codes
• Memory Debugging
• Debugging Accelerators and Coprocessors
•  Batch Debugging
• Reverse Debugging
• Running on ANL systems

2 © 2014 Rogue Wave Software, Inc. All Rights Reserved

Hybrid and Accelerated Applications

•  What do we see
–  NVIDIA Tesla GP-GPU computational accelerators
–  Intel Xeon Phi Coprocessors
–  Complex memory hierarchies (numa, device vs host, etc)
–  Custom languages such as CUDA and OpenCL
–  Directive based programming such as OpenACC and OpenMP
–  Core and thread counts going up

•  A lot of complexity to deal with if you want performance
–  C or Fortran with MPI starts to look “simple”
–  Everything is Multiple Languages / Parallel Paradigms
–  Up to 4 “kinds” of parallelism (cluster, thread, heterogeneous, vector)
–  Data movement and load balancing

3 © 2014 Rogue Wave Software, Inc. All Rights Reserved

How does Rogue Wave help?

•  Troubleshooting and analysis tool

–  Visibility Into

–  Control Over

•  Scalability

•  Usability

•  Advanced features/functionality

•  Support for HPC platforms and languages

TotalView debugger

© 2014 Rogue Wave Software, Inc. All Rights Reserved

TotalView Overview

Application Analysis and Debugging Tool: Code Confidently

•  Debug and Analyse C/C++ and Fortran on Linux™, Unix or Mac OS X
•  Laptops to supercomputers
•  Makes developing, maintaining, and supporting critical apps

easier and less risky

Major Features
•  Easy to learn graphical user interface with data visualization
•  Parallel Debugging

–  MPI, Pthreads, OpenMP™, GA, UPC
–  CUDA™, OpenACC®, and Intel® Xeon Phi™ coprocessor

•  Low tool overhead resource usage
•  Includes a Remote Display Client which frees you to work

from anywhere
•  Memory Debugging with MemoryScape™
•  Deterministic Replay Capability Included on Linux/x86-64
•  Non-interactive Batch Debugging with TVScript and the CLI
•  TTF & C++View to transform user defined objects

What is TotalView®?

© 2014 Rogue Wave Software, Inc. All Rights Reserved

Architecture for Cluster
Debugging

7

•  Single Front End (TotalView)‏
•  GUI
•  debug engine

•  Debugger Agents (tvdsvr)‏
•  Low overhead, 1 per node
•  Traces multiple rank processes

•  TotalView communicates
 directly with tvdsvrs
•  Not using MPI
•  Protocol optimization

Compute Nodes

Provides Robust, Scalable and efficient operation with Minimal
Program Impact

What is new in 8.13 and 8.14

•  8.13 (Nov 2013)
–  CUDA 5.0 and 5.5

•  Dynamic Parallelism

–  Xeon Phi Symmetric
–  MemoryScape Xeon Phi

support
•  Native and symmetric

–  OS X Mavericks
–  Performance

•  Setting breakpoints
•  Scalable dwhere & dstatus

–  Platform updates

•  8.14 (July 2014)
–  CUDA 6.0

•  Unified Memory

–  Early Access ReplayEngine Save/
Load functionality (CLI)

–  STLView for unordered_X
•  GCC only, for now
•  Unordered set/multiset & map/

multimap

–  Performance improvements
•  Startup performance
•  Complex C++ codes
•  Handling dlopen()

–  Platform updates

Multi-phase R&D Projects Underway

•  Massive Scalability
–  Collaboration with LLNL and Tri-lab partners
–  Targeting Cray, Blue Gene and Linux Clusters

•  Shiny new GUI
–  Sleek, Modern and Fast

–  Configurable
–  Improved Usability
–  Provides aggregation capabilities for big data and scale

–  Leveraging math and stat expertise from IMSL
•  Working with customers through early access programs

–  Customer input is key to the success of both programs

© 2014 Rogue Wave Software, Inc. All Rights Reserved

•  Implement an additional tree-based infrastructure using MRNet
•  Parallelize debugger operations to leverage the tree

–  Convert iteration in the front-end to…
–  Multicast down, and reduction up, the tree

•  Push debugger smarts, not the whole debugger, into the back-end
–  Operations previously handled by the debugger front-end must be

pushed down into the debugger back-end or target application
–  Operations requiring symbol table information must send it with the

request, or handled differently
–  The back-ends must get much smarter, but not much fatter

•  Apply “classic optimization” techniques too
–  Caching, hoisting loop invariants, change algorithms/data structures,

avoid bottlenecks, e.g., back-end file IO

TotalView Infrastructure Scalability Strategy

| Copyright © 2012 Rogue Wave
Software | All Rights Reserved

The “flat vector” of
servers infrastructure

is still supported

The “MRNet tree” of
servers infrastructure

has been added

M
ul

tic
as

t Reduction

TotalView debugs 786,432 cores.
Climb with Rogue Wave towards
exacale.

New-Style Root Window (SEA2+)

•  A prototype new-style root window w/ “-demo_ui”
•  Displays aggregated program information
•  Intended to eventually replace the old-style root window
•  Menu items that are not yet implemented are disabled

•  Diving selects a
representative of the
group and refocuses the
process window

•  Current aggregations
•  Hierarchical groupings

planned

© 2014 Rogue Wave Software, Inc. All Rights Reserved

Compressed ptlist Syntax

•  Aggregation requires a compact process/thread set representation (for both
CLI and GUI output)

•  General syntax of a ptlist
ptlist : pcount ‘:’ tcount ‘[’ ptrange [‘,’ ptrange] … ‘]’
ptrange : prange ‘.’ trange
prange : rank [‘-’ rank]

 | ‘p’ dpid [‘-’ dpid]
trange : dtid [‘-’ dtid]

•  Inspired by STAT and previous TotalView implementations

•  Example
28:28[0-26.1, p1.1]

© 2014 Rogue Wave Software, Inc. All Rights Reserved

Call Graph vs. Call Tree (SEA3+)

© 2014 Rogue Wave Software, Inc. All Rights Reserved

TotalView Scalable Early Access Summary

•  We value your feedback

•  Enable MRNet and the demo UI

–  totalview –mrnet –demo_ui …

•  Many infrastructure changes are in place already

–  Though not all operations parallelized yet

•  User interface changes in prototype phase

–  More improvements coming in existing UI

–  Remaining improvements coming in new UI

•  Questions?

Please give it try!

© 2014 Rogue Wave Software, Inc. All Rights Reserved

Demo

Debugging Hybrid MPI +
OMP codes

Process Window Overview

18

Toolbar

Stack Frame Pane

Source Pane

Tabbed Area

Stack Trace Pane

Provides detailed
state of one process,

or a single thread
within a process

A single point of
control for the

process and other
related processes

Stepping Commands

19

Basic Process Control

2
0

• Control Group
– All the processes created or attached together

Groups

• Share Group
– All the processes that share the same image

• Workers Group
– All the threads that are not recognized as
manager or service threads

• Lockstep Group
– All threads at the same PC

• Process, Process (Workers), Process (Lockstep)
– All process members as above

• User Defined Group
– Process group defined in Custom Groups dialog

Setting Breakpoints

21

• Breakpoint type

• What to stop

• Set conditions

• Enable/disable

•  In 1 process or
share group

22

Conditional Breakpoint

Evaluation Breakpoint…
Test Fixes on the Fly!

2
3

•  Test small source code
patches

•  Call functions
•  Set variables
•  Test conditions
•  C/C++ or Fortran
•  Can’t use C++

constructors
•  Use program variables
•  ReplayEngine records

changes but won’t step
through them

2
4

 TotalView understands C++ templates and gives you a choice ...

Boxes with solid lines around line numbers indicate code that exists at
more than one location.

Setting Breakpoints
With C++ Templates

Diving

2
5

Diving on a Common
Block in the Stack
Frame Pane"

Expression List Window

26

•  Reorder, delete, add
•  Sort the expressions
•  Edit expressions in place
•  Dive to get more info

•  Updated automatically
•  Expression-based
•  Simple values/expressions
•  View just the values you want to monitor

Add to the expression list using contextual menu with right-click on a
variable, or by typing an expression directly in the window

Visualizing Arrays

2
7

• Visualize array data using Tools > Visualize from the
Variable Window
• Large arrays can be sliced down to a reasonable size
first
• Visualize is a standalone program
• Data can be piped out to other visualization tools

• Visualize allows to spin,
zoom, etc.
• Data is not updated with
Variable Window; You
must revisualize
• $visualize() is a directive
in the expression system,
and can be used in
evaluation point
expressions.

Array Viewer

• Variable Window select Tools -> Array
Viewer

• View 2 dimensions of data

28

Dive in All

2
9

Dive in All will display "
 an element in an array "
 of structures as if "
 it were a simple array."

Looking at Variables across
Processes

30

•  TotalView allows you to
look at the value of a
variable in all MPI
processes"

•  Right Click on the
variable "

•  Select the View >
View Across"

•  TotalView creates an array
indexed by process "

•  You can filter and visualize

•  Use for viewing distributed
arrays as well.

STLView

31

STLView transforms templates into readable and
understandable information

– STLView supports std::vector, std::list, std::map, std::string

– See doc for which STL implementations are supported

C++View

•  C++View is a simple way for you to define type transformations
–  Simplify complex data
–  Aggregate and summarize
–  Check validity

•  Transforms
–  Type-based
–  Compose-able
–  Automatically

visible
•  Code

–  C++
–  Easy to write
–  Resides

in target
–  Only called by

TotalView

Message Queue Graph

33

•  Hangs &
Deadlocks

•  Pending
Messages
•  Receives
•  Sends
•  Unexpected

•  Inspect
•  Individual

entries

•  Patterns

Message Queue Graph

34

•  Filtering
•  Tags
•  MPI Communicators

•  Cycle detection
•  Find deadlocks

Message Queue
Debugging

Subset Attach

• Connecting to a subset of a job reduces
tokens and overhead

• Can change this during a run
• Groups->Subset Attach

35

Memory Debugging

What Is MemoryScape®?

•  Runtime Memory Analysis : Eliminate Memory Errors
–  Detects memory leaks before they are a problem
–  Explore heap memory usage with powerful analytical tools
–  Use for validation as part of a quality software development process

•  Major Features
–  Included in TotalView, or Standalone
–  Detects

•  Malloc API misuse
•  Memory leaks
•  Buffer overflows

–  Supports
•  C, C++, Fortran
•  Linux, Unix, and Mac OS X
•  Intel® Xeon Phi™
•  MPI, pthreads, OMP, and remote apps

–  Low runtime overhead
–  Easy to use

•  Works with vendor libraries
•  No recompilation or instrumentation

© 2014 Rogue Wave Software, Inc. All Rights Reserved

The Agent and Interposition"

38

Malloc API

User Code and Libraries

Process

TotalView
Heap Interposition

Agent (HIA)‏ Allocation
Table

Deallocation
Table

Enabling Memory Debugging
Memory Event Notification

39

Memory Event Details Window

40

Heap Graphical View

41

Leak Detection

•  Leak Detection
•  Based on Conservative

Garbage Collection

•  Can be performed at any
point in runtime

•  Helps localize leaks
in time

•  Multiple Reports

•  Backtrace Report

•  Source Code
Structure

•  Graphically Memory
Location

42

Dangling Pointer Detection

43

Memory Corruption Report

44

Memory Comparisons

45

•  “Diff” live processes

•  Compare processes
across cluster

•  Compare with
baseline

•  See changes
between point A and
point B

•  Compare with saved
session

•  Provides memory
usage change from
last run

Memory Usage Statistics

46

Memory Reports

47

•  Multiple Reports
•  Memory Statistics
•  Interactive Graphical

Display
•  Source Code Display
•  Backtrace Display

•  Allow the user to

•  Monitor Program
Memory Usage

•  Discover Allocation
Layout

•  Look for Inefficient
Allocation

•  Look for Memory Leaks

Debugging Accelerators
and Coprocessors

TotalView for the NVIDIA ® GPU Accelerator

•  NVIDIA Kepler
•  NVIDIA CUDA 5.0, 5.5, and 6.0 (New in 8.14)

–  With support for Unified Memory
•  Cray CCE OpenACC
•  Features and capabilities include

–  Support for dynamic parallelism
–  Support for MPI based clusters and multi-card

configurations
–  Flexible Display and Navigation on the CUDA device

•  Physical (device, SM, Warp, Lane)
•  Logical (Grid, Block) tuples

–  CUDA device window reveals what is running where
–  Support for types and separate memory address

spaces
–  Leverages CUDA memcheck

© 2014 Rogue Wave Software, Inc. All Rights Reserved

Debugging CUDA in TotalView

•  When a new kernel is loaded, you get the option of setting breakpoints

•  Once breakpoints are set, you can turn off the dialog and say no

50

Debugging CUDA in TotalView

•  CUDA threads are considered part of the initiating process

•  CUDA threads are given a negative TotalView thread id to distinguish them

•  Normal TotalView controls work on CUDA code

•  Underneath Toolbar is a GPU focus thread selector for changing block and
thread indices

51

Control of Threads and Warps

•  Warps advance synchronously

•  They share a PC

•  Single step operation advances all GPU threads in the same warp

•  Stepping over a __syncthreads() call will advance all relevant threads

•  To advance more than one warp

•  Continue, possibly after setting a new breakpoint

•  Select a line and “Run To”

52

CUDA Built-in Runtime Variables

•  Supported built-in runtime variables are:

•  struct dim3_16 threadIdx;

•  struct dim2_16 blockIdx;

•  struct dim3_16 blockDim;

•  struct dim2_16 gridDim;

•  int warpSize;

53

GPU Device Status

54

Example of divergent
GPU threads

Different PC for two
groups of lanes

State of lanes inside
warp

•  Display of
PCs across
SMs, Warps
and Lanes

•  Updates as
you step

•  Shows what
hardware is
in use

•  Helps you
map
between
logical and
hardware
coordinates

TotalView for the Intel® Xeon Phi™ coprocessor

Supports All Major Intel Xeon Phi Coprocessor Configurations
•  Native Mode

–  With or without MPI
•  Offload Directives

–  Incremental adoption, similar to GPU
•  Symmetric Mode

–  Host and Coprocessor
•  Multi-device, Multi-node
•  Clusters

User Interface
•  MPI Debugging Features

–  Process Control, View Across, Shared Breakpoints
•  Heterogeneous Debugging

–  Debug Both Xeon and Intel Xeon Phi Processes

Memory Debugging
•  Both native and symmetric mode

© 2014 Rogue Wave Software, Inc. All Rights Reserved

Batch Debugging

TVScript Overview

•  Gives you non-interactive access to TotalView�s capabilities
•  Useful for

–  Debugging in batch environments
–  Watching for intermittent faults
–  Parametric studies
–  Automated testing and validation

•  TVScript is a script (not a scripting language)
–  It runs your program to completion and performs debugger actions on it as you

request
–  Results are written to an output file
–  No GUI
–  No interactive command line prompt

•  A “better” printf()

Sample Output

•  Simple interface to create an action point
-create_actionpoint ”#85=>print foreign_addr”

•  Sample output with all information
!!!
! Print
!
! Process:
! ./TVscript_demo (Debugger Process ID: 5, System ID: 2457@127.0.1.1)
! Thread:
! Debugger ID: 5.1, System ID: 3077191888
! Rank:
! 0
! Time Stamp:
! 05-14-2012 17:11:24
! Triggered from event:
! actionpoint
! Results:
! err_detail = {
! intervals = 0x0000000a (10)
! almost_pi = 3.1424259850011
! delta = 0.000833243988525023
! }
!
!!!

58

Events

•  General
•  any_event

•  Source code debugging events
•  actionpoint
•  error

•  Memory events (just a few, all are listed in Chapter 4 of TotalView
Reference Guide)

•  any_memory_event
•  free_not_allocated
•  guard_corruption
•  rz_overrun, rz_underrun, rz_use_after_free

59

Actions

•  Source code

•  display_backtrace [-level num] [numlevels] [options]

•  print [-slice {exp}] {variable | exp}

•  Memory

•  check_guard_blocks

•  list_allocations

•  list_leaks

•  save_html_heap_status_source_view

•  save_memory_debugging_file

•  save_text_heap_status_source_view

60

Command syntax

•  General syntax

•  tvscript [options] [filename] –a [program_args]

•  MPI Options

•  -mpi starter starter comes from Parallel tab dropdown

•  -starter_args “args for starter program”

•  -nodes

•  -np or –procs or –tasks

61

Command syntax

•  Action options
•  -create_actionpoint “src_expr[=>action1[,action2] …]”

•  Repeat on command line for each actionpoint

•  -event_action “event_action_list”
•  event1=action1,event2=action2 or event1=>action1,action2

•  Can repeat on command line for multiple actions

•  General options
•  -display_specifiers “display_specifiers_list”
•  -maxruntime “hh:mm:ss”
•  -script_file scriptFile
•  -script_log_filename logFilename
•  -script_summary_log_filename summaryLogFilename

62

Reverse Debugging

•  Reverse Debugging: Radically simplify your debugging

–  Captures and Deterministically Replays Execution
•  Not just “checkpoint and restart”

–  Eliminate the Restart Cycle and Hard-to-Reproduce Bugs
–  Step Back and Forward by Function, Line, or Instruction

•  Specifications
–  A feature included in TotalView on Linux x86 and x86-64

•  No recompilation or instrumentation
•  Explore data and state in the past just like in a

live process, including C++View transformations
–  Replay on Demand: enable it when you want it
–  Supports MPI on Ethernet, Infiniband, Cray XE Gemini
–  Supports Pthreads, and OpenMP
–  New: Save / Load Replay Information (CLI only)

Deterministic Replay Debugging

© 2014 Rogue Wave Software, Inc. All Rights Reserved

Running on ALCF
systems

Debugging on BG/Q with Totalview 8.14.0

Load .totalview in your .soft
Use the remote display client
Just add totalview –args before runjob

•  totalview -args runjob --block $COBALT_PARTNAME -p 16 : demoMpi

•  Add options from ~/chrisg/ATPESC/example.tvdrc to your .totalview/.tvdrc
to use the MRNet early access

•  For memory debugging (from documentation):

•  Link statically as –L<path> -ltvheap -Wl,rpath,<path>

•  Link dynamically as –L<path> -Wl,@<path>/tvheap_bgqs_ld

•  TotalView 8.14 will be available on Mira, Vesta, Cetus and Tukey for the

duration of the training.

Thanks!

•  To learn more / sign up for the Scalability Early Experience Program please
contact me: chris.gottbrath@roguewave.com

•  Visit the website

–  http://www.roguewave.com/products/totalview.aspx

–  Videos

–  Documentation

–  Sign up for an evaluation

–  Contact customer support & post on the user forum

67 © 2014 Rogue Wave Software, Inc. All Rights Reserved

