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What are Supercomputers Good For?
  

• Quantitative predictions for 
complex systems 

• Discovery of new physical 
mechanisms 

• Ability to carry out ‘virtual’ 
experiments (system scale 
simulations) 

• Solving large-scale inverse 
problems 

• Ability to carry out very 
large individual runs as 
well as simulation 
campaigns 

• New communities, new 
directions? 

• Supercomputing + Large-
Scale Data Analytics? 
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But —
  

• Dealing with supercomputers is painful! 
• HPC programming is tedious (MPI, OpenMP, CUDA, OpenCL, —) 

• Batch processing ruins interactivity  

• File systems corrupt/eat your data 

• Software suite for HPC work is very limited 

• Analyzing large datasets is frustrating 

• HPC experts are not user-friendly 

• Machine crashes are common 

• Ability to ‘roll your own’ is limited 

!
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Supercomputers: Personal History

CM-200

CM-5

T3-D
T3-E

XT-4

O2000
SP-2

Roadrunner

BG/Q
Dataplex

ASCI ‘Q’

XK-7
XE-6

XC-30

BG/P

Supercomputing is not for everyone —
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When are Supercomputers (almost) Replacable?
  

• Obviously if there’s no hurry, problems 
are small enough, etc. 

• More interestingly — what is the 
quantity of actual interest? 

• Typically supercomputers ‘create’ 
information — how much of this is 
actually important? 

• Key role of summary statistics/feature 
extraction — a form of data 
compression 

• Emulation — The idea of using a finite 
(‘small’) number of supercomputer 
simulations to interpolate over 
parameter dependencies  

• How smooth are the parametric 
dependencies? 

• Can such a strategy work in a high-
dimensional space? 
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Temperature fluctuations in the CMB sky as 
measured by Planck, 2013

Summary Statistic: Temperature fluctuation 
angular power spectrum in multipole space



Summary Statistics: Precision Cosmology Example

Planck (2013)

Concurrent 
Supercomputing 
Progress

Four orders of 
magnitude!

Equivalent to 
one modern GPU

Compilation for SH by  
E. Gawiser (1999)

sCDM

CMB LSS

4 orders of 
magnitude!

BOSS (2013)

Compilation (1999)
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Emulation and Cosmic Calibration: People
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Nick Frontiere
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ROSAT (X-ray) WMAP (microwave)

Fermi (gamma ray) SDSS (optical)

Science at the Cosmic Frontier: ‘Precision’ Cosmology

Source of Knowledge: Sky Surveys

  
• Instrumentation Advances:  Wide/deep sky 

coverage, multi-wavelength observations no longer 
statistics-limited (near-term target, ~1% errors on 
cosmological parameters or better) 

• Precision Cosmology Science:  
• Nature of cosmic acceleration  

• Nature and interactions of dark matter 

• Primordial fluctuations and tests of inflation 

• Probes of fundamental physics (neutrino sector)  

• Physics of structure formation 

• Theory Advances: Predictive theory and modeling 
becoming crucially important (‘theory gap’) 

• Computational Cosmology:  
• Basic predictions (‘forward modeling’) 

• Cosmological inference (‘inverse problems’) 

• End-to-end modeling (system-scale control of 
systematics) 

• Large-scale computing requirements (as for 
lattice QCD) 

!
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Emulation strategies work here



Large Scale Structure Simulation Requirements

• Force and Mass Resolution:  
• Galaxy halos ~100kpc, hence force 

resolution has to be ~kpc; with Gpc box-
sizes, a dynamic range of a million to 
one 

• Ratio of largest object mass to lightest is 
~10000:1  

• Physics:  
• Gravity dominates at scales greater than 

~0.1 Mpc 

• Small scales: galaxy modeling, semi-
analytic methods to incorporate gas 
physics/feedback/star formation 

• Computing ‘Boundary Conditions’:  
• Total memory in the PB+ class 

• Performance in the 10 PFlops+ class 

• Wall-clock of ~days/week, in situ 
analysis

Key motivation for HACC (Hardware/
Hybrid Accelerated Cosmology Code): 
Can the Universe be run as a short 
computational ‘experiment’?

1000 Mpc

100 Mpc

20 Mpc

2 Mpc

Ti
m

e

Gravitational Jeans Instability: ‘Outer Rim’ 
run with 1.1 trillion particles
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Q Continuum: Extradimensional plane of existence Visualization: Silvio Rizzi, Joe Insley et. al., Argonne

The high resolution Q Continuum Simulation, finished July 13 on ~90% of Titan under INCITE, evolving more than 
half a trillion particles. Shown is the output from one node (~33 million particles), 1/16384 of the full simulation
30



Cosmology with HACC: Exquisite Statistics

z=1.01

Millennium simulation, Springel et al. 
Nature 2005

“Baryon wiggles” 
powerful probe of  

dark energy

z=3.04

z=0.49

z=7.04

• Millennium simulation and Outer Rim run are very similar in force and mass 
resolution, but volume larger by a factor of 216 

• Exceptional statistics at high resolution enable many science projects  

 

Outer Rim Power Spectra

Mira ESP
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Precision Cosmology: ‘Big Data’ Meets Supercomputing 

Mapping the 
Sky with Survey 

Instruments

Emulator based on 
Gaussian Process 

Interpolation in 
High-Dimensional 

Spaces

Supercomputer 
Simulation 
Campaign

Markov chain 
Monte Carlo

LSST

Observations: 
Statistical error 

bars will 
‘disappear’ soon!

HPC	
  Systems

MCMC	
  
Framework

‘Dark	
  Universe’	
  
Science

Survey	
  Telescope	
  
(LSST)

SimulaAon	
  
Campaign

ObservaAonal	
  
Campaign

Cosmological	
  
Probes

Cosmic	
  	
  Emulators

Science	
  with	
  Surveys:	
  HPC	
  
meets	
  Big	
  DataCCF= Cosmic Calibration Framework (2006)

Simulations 
+ 

CCF

‘Precision 
Oracle’

Calibration

Major stats +  
ML+ sampling + 

optimization 
collaboration
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Precision Cosmology: Statistics + Machine Learning

Black Box Black Box

Old School Stats: Limited Data 
(‘benign’ black box,  

controlled environment)

Machine Learning: ‘Big Data’ 
(‘vicious’ black box,  

potentially uncontrolled environment)

Find the (simple) 
‘data model’

Find the (arbitrary) 
‘dynamical map’

Both (cartoon) approaches useful but by no means exhaustive in terms of scientific value-- 
with a good theory (forward model) and sufficient computing the box is not black!  
We are not ‘model-free’ --

Theory and 
Modeling 

Inputs  
(prior ranges)

Dynamical Model: 
The Theory 
Cruncher

Measurement 
Model: Reduction 

to Summary 
Statistics

Summary 
Statistics 

(restricted to 
what can be 
measured)

Statistics meets Machine Learning in the Supercomputing/Big Data Environment
Modeling cycle: Predict, (Cross) Validate, Optimize
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Cosmic Calibration: Solving the Inverse Problem

• Challenge: To extract cosmological 
constraints from observations in non-
linear regime, need to run Markov 
Chain Monte Carlo code; input: 
10,000 - 100,000 different models 

• Current strategy: Fitting functions 
for e.g. P(k), accurate at 10% level, 
not good enough! 

• Brute force: Simulations, ~30 years 
on 2000 processor cluster... 

• Only alternative: emulators

Run suite of simulations 
(40,100,...) with chosen 

parameter values

Design optimal simulation 
campaign over (~20) 

parameter range

Statistics Package 
(Gaussian Process 
Modeling, MCMC) 

Response 
surface; 
emulator 

Calibration 
Distribution 

Observation 
input 

Predictive 
Distribution

Model 
inadequacy, 

self calibration 
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CosmicEmu 
publicly available

Optimal sampling 

Heitmann et al. 2006, Habib et al. 2007
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Gaussian Process Modeling
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Prior distribution over random functions: 
global mean zero (although individual 
choices clearly are not mean-zero), 
variance assumed to be independent of 
x, 2-SD band in gray

Posterior distribution conditioned on 
exact information at two x points, 
consider only those functions from the 
prior distribution that pass through 
these points 

Rasmussen & Williams 2006

Reduction 
in posterior 
uncertainty

GPs are nonparametric, so there is no need to worry if the functions can fit the 
data (e.g., linear functions against nonlinear data), even with many observations 
still have plenty of candidate functions  
!
With GP models, the choice of prior distribution over random functions is 
essentially a statement of the properties of the initial covariance function, these 
properties can be specified in terms of a set of hyperparameters, using data to 
determine these defines the learning problem for the GP approach 

Acceptable functions

Mean value function 
(not mean zero!)

Avoid overfitting by using 
priors on hyperparameters 
and by controlling the 
learning process 



Sampling
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Sandor & Andras 2003 
RANDOM ORTHOGONAL ARRAY

LATIN HYPERCUBE OA-LH (Tang 1993)

Strive for “equidistribution” property 
over the sampling space, best approach 
when ignorant of functional variation, well-
suited to GPs.

Practical 128 point, 5-level, strength-2-
based design [level=#variable slices, 

strength=(lower) dimension to be sampled, 
#columns=#variables, #rows=#trials]



Data Compression: PCA Basis
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SIMULATIONS MEAN FIRST 5 PCs

COSMOLOGICAL/MODELING 
PARAMETERS

PC BASIS 
FUNCTIONS

GP WEIGHTS STANDARDIZED 
PARAMETER DOMAIN

Heitmann et al 2006

Mean-adjusted Principal Component Representation



GP Predictions at new Settings
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Testing: Hold-Outs
18

Can also do convergence 
studies by varying the number 
of evaluation parameters —



Cosmic Emulator in Action

• Instantaneous ‘oracle’ for nonlinear power spectrum, reduces compute time from 
weeks to sub-seconds, accurate at 1% out to k~1/Mpc, 3% out to k~10/Mpc  

• Enables direct MCMC with results from full simulations for the first time

Heitmann et al. 2009, 2010 
 Lawrence et al. 2010 
Heitmann et al. 2014
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Next Steps —

• Discrepancy Modeling: What happens if your forward model isn’t correct? 
• Nested/Adaptive Sampling: Convergent/Learning approach to emulation 
• Covariance Emulation: Emulate covariances rather than just the mean 
• Accuracy Limits: Theory for convergence (a posteriori so far) 
• Limits of Dimensionality: How high can we go? 
!
!
!
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Kwan et al. (2014)

Galaxy power spectrum, HOD emulator

Comparison to the halo model  
by Zheng et al. (2004), ratio blue/black 

Our prediction

Halo model
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